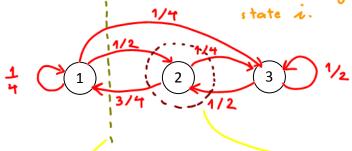
Instructions

- Separate into groups of no more than three persons.
- Only one submission is needed for each group. Late submission will not be accepted.
- 3. Write down all the steps that you have done to obtain your

answers. You may not get full credit even when	your answer
is correct without showing how you get your answer.	


Name	ID
Pragun	
•	

Do not panic.

Consider a Markov chain whose transition probability matrix is given by $P = \begin{bmatrix} 1/4 & 1/2 & 1/4 \\ 3/4 & 0 & 1/4 \\ 3 & 0 & 1/2 & 1/2 \end{bmatrix}$.

The (i, j) element in P gives the probability

of the system evolving to state; in the next "slot" given that it is currenty in 1. Draw the corresponding Markov chain

In your drawing above, draw (using a different color) the boundary that corresponds to the balance

equation
$$\frac{1}{2}p_1 - p_2 + \frac{1}{2}p_3 = 0$$
. $\Leftrightarrow \frac{1}{2}p_1 + \frac{1}{2}p_3 = p_2$ The corresponding boundary

State 1) and state 3

on one side

on another side

state 2.

3. Find the steady-state probabilities for this Markov chain. (Don't forget to indicate the boundaries and the corresponding balance equations.)

There are three unknowns: pup, ps. So, we need three equations. we always have one : P1+P2+P3=1. > P1+P3=1-P2

Previously, me already have one boundary: \frac{1}{2} P, + \frac{1}{2} P_3 = P_2

I we draw another boundary in the Markov chain to get 1/1+ 1/2 P1 = 3 P2

Page 1 of 1

Therefore, P1 = P2 = P3 = 1/3